\infty} \frac{x+1}{x-2}=\\\\lim_{x->\infty} \frac{1+\frac{1}{x}}{1-\frac{2}{x}}=\\\\\frac{lim_{x->\infty} (1+\frac{1}{x})}{lim_{x->\infty}(1-\frac{2}{x})}=\\\\\frac{1+lim_{x->\infty}\frac{1}{x}}{1-lim_{x->\infty}\frac{2}{x}}=\frac{1+0}{1-0}=1" alt="lim_{x->\infty} \frac{x+1}{x-2}=\\\\lim_{x->\infty} \frac{1+\frac{1}{x}}{1-\frac{2}{x}}=\\\\\frac{lim_{x->\infty} (1+\frac{1}{x})}{lim_{x->\infty}(1-\frac{2}{x})}=\\\\\frac{1+lim_{x->\infty}\frac{1}{x}}{1-lim_{x->\infty}\frac{2}{x}}=\frac{1+0}{1-0}=1" align="absmiddle" class="latex-formula">