Помогите, плиизз. Хотя бы один)

0 голосов
27 просмотров

Помогите, плиизз. Хотя бы один)


image

Алгебра (25 баллов) | 27 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
4^{|x| + \sqrt{x^2 - 2}} - 17*2^{|x| - 2 + \sqrt{x^2 - 2}} = -1\\\\
(2^{|x| + \sqrt{x^2 - 2}})^2 - \frac{17}{4}*2^{|x| + \sqrt{x^2 - 2}} + 1 = 0\\\\
\left[ \ (\frac{17}{8})^2 - \frac{225}{64} = 1 \ \right]\\\\
(2^{|x| + \sqrt{x^2 - 2}})^2 - 2*\frac{17}{8}*2^{|x| + \sqrt{x^2 - 2}} + (\frac{17}{8})^2 - \frac{225}{64} = 0 \\\\(2^{|x| + \sqrt{x^2 - 2}} - \frac{17}{8})^2 - \frac{225}{64} = 0\\\\
(2^{|x| + \sqrt{x^2 - 2}} - \frac{17}{8} - \frac{15}{8})(2^{|x| + \sqrt{x^2 - 2}} - \frac{17}{8} + \frac{15}{8}) = 0


image 0; \ x + \sqrt{x^2 - 2} = 2\\\\ \sqrt{x^2 - 2} = 2 - x\\\\ x^2 - 2 = 4 - 4x + x^2\\\\ -4x = -6\\\\ x = \frac{3}{2}\\\\\\ x < 0; \ -x + \sqrt{x^2 - 2} = 2\\\\ \sqrt{x^2 - 2} = 2 + x\\\\ x^2 - 2 = 4 + 4x + x^2\\\\ 4x = -6\\\\ x = -\frac{3}{2}\\\\" alt="1) \ 2^{|x| + \sqrt{x^2 - 2}} - \frac{32}{8} = 0\\\\ 2^{|x| + \sqrt{x^2 - 2}} = 2^{2}\\\\ |x| + \sqrt{x^2 - 2} = 2\\\\\\ x > 0; \ x + \sqrt{x^2 - 2} = 2\\\\ \sqrt{x^2 - 2} = 2 - x\\\\ x^2 - 2 = 4 - 4x + x^2\\\\ -4x = -6\\\\ x = \frac{3}{2}\\\\\\ x < 0; \ -x + \sqrt{x^2 - 2} = 2\\\\ \sqrt{x^2 - 2} = 2 + x\\\\ x^2 - 2 = 4 + 4x + x^2\\\\ 4x = -6\\\\ x = -\frac{3}{2}\\\\" align="absmiddle" class="latex-formula">


2) \ 2^{|x| + \sqrt{x^2 - 2}} - \frac{2}{8} = 0\\\\
2^{|x| + \sqrt{x^2 - 2}} = 2^{-2}\\\\
|x| + \sqrt{x^2 - 2} = -2 (!)\\\\\\
\boxed{\mathbb{OTBET}: \ x = \frac{3}{2}, \ x = -\frac{3}{2}}
























(8.8k баллов)