1.Найдите длину отрезка AB и координаты его середины если тA с координатами (1;3;4), а тB...

0 голосов
24 просмотров
1.Найдите длину отрезка AB и координаты его середины если тA с координатами (1;3;4), а тB с координатами (-1;4;2)
2. Найдите координаты вектора AB и его длину если тA c координатам (1;0;2)и т B с координатами (-2;4;2)

Геометрия (75 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1. Координаты вектора равны разности соответствующих координат точек его конца и начала.  Модуль или длина отрезка (вектора): |a|=√(x²+y²+z²).
В нашем случае: |AB|=√[(Xb-Xa)²+(Yb-Ya)²+(Zb-Za)²] или
|AB|=√[(-1-1)²+(4-3)²+(2-4)²] =√(4+1+4)=√9=3.
Координаты середины отрезка AB найдем по формуле
x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
Xab=(1-1)/2 = 0;
Yab=(4+3)/2=3,5;
Zab=(4+2)/2=3.
2. Xab=-2-1=-3;
Yab=4-0=4;
Zab=2-2=0.
|AB|=√[(-3)²+(4)²+(0)²] =√(9+16+0)=√25=5.

(117k баллов)