Хорда, стягивающая дугу 90˚ является стороной вписанного в окружность квадрата. Диаметр окружности равен 8*√2 см (радиус 4*√2 см). Наибольший угол между образующими конуса получится в сечении конуса, если его вертикальной плоскостью рассечь пополам. В сечении получится равнобедренный треугольник с основанием 8*√2 см. и углом при вершине 120˚. Он легко решается, например по теореме косинусов. Боковая сторона треугольника (образующая конуса) равна 8*√(2/3) см. Площадь полной поверхности конуса: S(полн.)=Пи*r^2+ПИ*r*l=Пи*(32+4*√2*8*√(2/3))=32*Пи*(1+2/√3) см^2.