открываем скобки и переносим все в одну сторону:
Собираем все под общий знаменатель (все писать не буду, даю сразу приведенный результат):
Рассматриваем знаменатель:
X^2 + 2x = 0,
x=0 и х=-2;
x^2+2x+1,
х=-1.
Однако корнями уравнения эти корни являться не могут, так как знаменатель не может равняться нулю. Это выпадающие точки.
Рассматриваем числитель:
2x^4+8x^3+7x^2-2x-1 = 0,
Используем метод неопределенных коэффициентов (удобен тем, что утверждает, что любой многочлен четвертой степени разлагается на произведение многочленов второй степени). Коэффициенты просто угадываются (подбираются).
Получается:
(х^2+2x-1)*(2x^2+4x+1) = 0.
Корни квадратных уравнений находятся просто по дискриминанту:
х^2+2x-1 =0
Х(1) =
=
Х(2) =
=
2x^2+4x+1 = 0
х(1) =
х(2) =