ПОМОГИТЕ ПРОШУ!!!Найдите целые отрицательные решения неравенств:1) x^4-4x^2 меньше 02)...

0 голосов
84 просмотров

ПОМОГИТЕ ПРОШУ!!!Найдите целые отрицательные решения неравенств:
1) x^4-4x^2 меньше 0
2) 27-3x^2 больше либо равно 0
3) x^2-x-2/x2 меньше 0
4) x^2+x/x^2-3


Алгебра (219 баллов) | 84 просмотров
0

в третьем ,там все поделить на xквадрат иди это 2 x

0

или

0

всё поделить на хквадрат

0

и в 4 , что там

0

? какой там знак

0

мне что ли это надо

0

меньше равно нулю

0

отходил,

Дан 1 ответ
0 голосов
Правильный ответ
Найдите целые отрицательные  решения неравенств:
1) x^4-4x^2\ \textless \ 0
Рассмотрим функцию f(x)=x^4-4x^2
Её область определения: D(f)=(-\infty;+\infty)

Приравниваем функцию к нулю:
f(x)=0;\,\,\,\,\, x^4-4x^2=0\\ x^2(x^2-4)=0
Произведение равно нулю, если один из множителей равен нулю
\left[\begin{array}{ccc}x^2=0\\x^2-4=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2_,_3=\pm 2\end{array}\right

На интервале найдем решение неравенства

_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток - x \in (-2;0)\cup(0;2)

Целое отрицательное число из промежутка: -1

Ответ: -1.

2) 27-3x^2 \geq 0|\cdot(-1)
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный

-27+3x^2 \leq 0\\ 3x^2 \leq 27|:3\\ x^2 \leq 9\\ \\ |x| \leq 3\\ \\ -3 \leq x \leq 3

Целые отрицательные числа промежутка: -3; -2; -1.

Ответ: -3; -2; -1.

3) \dfrac{x^2-x-2}{x^2} \ \textless \ 0
Рассмотрим функцию
  f(x)= \dfrac{x^2-x-2}{x^2}
Область определения:
 
x\ne 0
D(f)=(-\infty;0)\cup(0;+\infty)
Приравниваем функцию к нулю:
f(x)=0;\,\,\,\, \dfrac{x^2-x-2}{x^2} =0
Дробь обращается в 0 тогда, когда числитель равен нулю
x^2-x-2=0
По т. Виета: x_1=-1;\,\,\,\,\, x_2=2

Найдем решение неравенства
  ___+___(-1)___-____(0)____-__(2)____+____
x \in (-1;0)\cup(0;2) - решение неравенства

Целых  отрицательных чисел - НЕТ

Ответ: целых отрицательных чисел нет

4) \dfrac{x^2+x}{x^2-3} \leq 0
Рассмотрим функцию
   f(x)= \dfrac{x^2+x}{x^2-3}
Область определения функции:
  x^2-3\ne 0\,\,\,\, \Rightarrow\,\,\,\,\,\, x\ne\pm \sqrt{3}

D(f)=(-\infty;- \sqrt{3} )\cup(- \sqrt{3} ; \sqrt{3} )\cup( \sqrt{3} ;+\infty)

Приравниваем функцию к нулю
  \dfrac{x^2+x}{x^2-3} =0
Дробь обращается в нуль, если числитель равен нулю
x^2+x=0\\ x(x+1)=0\\ \left[\begin{array}{ccc}x=0\\ x+1=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2=-1\end{array}\right

Вычислим решение неравенства:
  __+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства: x \in (- \sqrt{3} ;-1]\cup[0;\sqrt{3} )

Целые отрицательные решения : -1

Ответ: -1.