общая хорда двух пересекающихся окружностей видна из их центров под углами90° и 60° ....

0 голосов
134 просмотров

общая хорда двух пересекающихся окружностей видна из их центров под углами90° и 60° . Найдите длину хорды,если центры окружностей лежат по одну сторону от хорды, а расстояние между центрами равно 9(√3-1)


Геометрия (79 баллов) | 134 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Делаем рисунок к задаче. Не стала рисовать  меньшую окружность, чтобы не загромождать рисуно. Ее центр о,  радиусы оА и оВ

Так как хорда видна из центра большей окружности под углом 60°,

треугольник АВО - равносторонний.

Хорда АВ равна радиусу ОА.
Проведем высоту ОМ.
Примем сторону АВ=а
ОМ=(а√3):2 по формуле высоты правильного треугольника
Рассмотрим прямоугольный треугольник АоВ
АоВ - равнобедренный, и поэтому оМ в нём равна половине АВ и равна а:2
Запишем выражением разность между ОМ и оМ
(а√3):2 - а:2=(а√3 - а):2=а(√3-1):2
Но это расстояние по условию задачи равно 9(√3-1)
а(√3-1):2=9(√3-1)
Сократим обе части уравнения на (√3-1)
а:2=9
а=9*2=18

Хорда =18

(228k баллов)