Дано: треугольник ABC, медиана ВН, АВ=ВС
Док-ть: медиана является высотой и биссектрисой.
Док-во: Рассмотрим треугольники АВН и ВНС:
т.к ВН-медиана, значит отрезки АН и НС равны. АВС-равнобедренный треугольник, следовательно АВ=ВС. В равнобедренном треугольнике углы при основании равны, следовательно угол А = углу С. Из всего этого следует, что треугольник АВН и ВНС равны, следовательно угол АВН= углу НВС, следовательно ВН-биссектриса.
Угол АНВ=углу ВНС, и они смежные,следовательно их сумма равна 180 градусов, а если они равны, значит угол АНВ=углу НВС=90 градусов, следовательно ВР является высотой треугольника.
ЧТО И ТРЕБОВАЛОСЬ ДОКАЗАТЬ