-x + p = x² + 3x
x² + 3x + x - p = 0
x² + 4x - p = 0 (1)
Уравнение должно иметь ровно одно решение (тогда прямая имеет с параболой ровно одну общую точку) => дискриминант должен быть равен нулю.
D = 16 + 4р
Получаем уравнение от р:
16 + 4р = 0
р = -4
Итак, при р = -4 прямая имеет с параболой ровно одну общую точку.
и прямая имеет вид y = - x - 4 .
Теперь найдем координаты их точки пересечения.
Для этого запишем уравнение (1) при р = -4 : x² + 4x + 4 = 0
и найдем его решение при D = 0.
х = -4/2 = -2 (абсцисса точки пересечения)
Теперь подставим найденное значение х в уравнение прямой, учитывая, что р = -4
y = - x - 4 = 2 - 4 = -2 (ордината точки пересечения)
Координаты точки пересечения прямой и параболы (-2; -2).