Это сечение представляет собой треугольник, основанием которого является диагональ прямоугольного основания пирамиды, а высотой - отрезок, параллельный боковому ребру и равный половине бокового ребра.
Найдём диагональ прямоугольника: d = √(6² + 8²) = √(36 + 64) = √100 = 10(дм)
Длина ребра: L = √((0.5d)² + h²) = √(5² +2²) =√29
Площадь сечения:
S = 0.5d·0.5L = 0.5·10·0.5·√29 = (5√29)/2 (дм²)
или ≈ 13,5 дм²