a)\ \cosx=\frac{1}{2}; b)\ \cosx=-\frac{1}{2};" alt="
a)\ \cosx=\frac{1}{2}; b)\ \cosx=-\frac{1}{2};" align="absmiddle" class="latex-formula">
x=\pm\arccos\frac{1}{2}+2\pi n,\ n\in Z;" alt="
x=\pm\arccos\frac{1}{2}+2\pi n,\ n\in Z;" align="absmiddle" class="latex-formula">
x=\pm\frac{\pi}{3}+2\pi n,\ n\in Z;" alt="
x=\pm\frac{\pi}{3}+2\pi n,\ n\in Z;" align="absmiddle" class="latex-formula">
x=\pm\arccos(-\frac{1}{2})+2\pi n,\ n\in Z;" alt="
x=\pm\arccos(-\frac{1}{2})+2\pi n,\ n\in Z;" align="absmiddle" class="latex-formula">
x=\pm (\pi-\frac{\pi}{3})+2\pi n,\ n\in Z;" alt="
x=\pm (\pi-\frac{\pi}{3})+2\pi n,\ n\in Z;" align="absmiddle" class="latex-formula">
x=\pm\frac{2\pi}{3}+2\pi n,\ n\in Z;" alt="
x=\pm\frac{2\pi}{3}+2\pi n,\ n\in Z;" align="absmiddle" class="latex-formula">
Отбор корней на отрезке:
a)\ x = \pm\frac{\pi}{3}+2\pi n;" alt="
a)\ x = \pm\frac{\pi}{3}+2\pi n;" align="absmiddle" class="latex-formula">
\frac{1}{3};" alt="3-\frac{1}{3}\leq 2n \leq \frac{9}{2}-\frac{1}{3};" align="absmiddle" class="latex-formula">
нет таких n\in Z." alt="n\in Z." align="absmiddle" class="latex-formula">
Ответ: