Производная функции − одно из основных понятий математики, а в математическом анализе производная наряду с интегралом занимает центральное место. Процесс нахождения производной называетсядифференцированием. Обратная операция − восстановление функции по известной производной − называется интегрированием.
Производная функции в некоторой точке характеризует скорость изменения функции в этой точке. Оценку скорости изменения можно получить, вычислив отношение изменения функции Δy к соответствующему изменению аргумента Δx. В определении производной такое отношение рассматривается в пределе при условии Δx → 0. Перейдем к более строгой формулировке:Определение производнойРассмотрим функцию f(x), область определения которой содержит некоторый открытый интервал вокруг точки x0. Тогда функция f(x) является дифференцируемой в точке x0, и ее производная определяется формулойДля производной используются обозначения:Для нахождения производной функции f(x) в точке x0 на основе определения следует выполнить следующие действия:Записать отношение ;Упростить дробь, сократив ее, если возможно, на Δx;
Найти производную , вычисляя предел дроби. Если данный предел существует, то говорят, что функция f(x) дифференцируема в точке x = x0.В примерах ниже мы выведем производные основных элементарных функций, используя приведенное формальное определение производной. Эти функции составляют основной костяк в том смысле, что производные других функций можно выразить уже через них, применяя правила действия с производными.
Пример 1Используя определение производной, показать, что производная постоянного числа равна 0.
Решение.В данном случае функция y(x) всегда равна некоторой константе C. Поэтому можно записать Ясно, что приращение функции тождественно равно нулю: Подставляя это в определение производной через предел, получаем: