\ \ \int\limits _E \, d\gamma=\int \sqrt{X'(t)^2+Y'(t)^2} \, dt \\
\int\limits _E \, d\gamma = \int\limits^{2\pi}_0 {\sqrt{(1-Cost)^2+Sin^2t}} \, dt = \int\limits^{2\pi}_0 {\sqrt{2-2Cost}} \, dt=8" alt="\gamma:[0,2\pi] \longrightarrow \mathbb{R}^2 \ \ \ \gamma(t)=(X(t),Y(t))=(t-Sint,1-Cost) \\
X(t) \in C^1 \ \ \wedge \ \ Y(t) \in C^1 \ \ \ => \ \ \int\limits _E \, d\gamma=\int \sqrt{X'(t)^2+Y'(t)^2} \, dt \\
\int\limits _E \, d\gamma = \int\limits^{2\pi}_0 {\sqrt{(1-Cost)^2+Sin^2t}} \, dt = \int\limits^{2\pi}_0 {\sqrt{2-2Cost}} \, dt=8" align="absmiddle" class="latex-formula">