f(x)=x³ - 3x
найдём производную
f'(x)=3x² - 3
Приравняем производную нулю
3x² - 3 = 0
3(х² - 1) = 0
x₁ = -1
x₂ = 1
разделим числовую прямую на интервалы и найдём знаки производной в этих интервалах
+ - +
------- -1 --------- 1 --------
Поскольку график функции f'(x)=3x² - 3 - квадратная парабола веточками вверх, то знаки производной будут такими, как показано на рисунке.
Тогда в точке x₁ = -1 имеет место максимум, т.к производная меняет свой знак с + на -, а в точке x₂ = 1 имеет место минимум, т.к. производная меняет знак с - на +.
уmax = y(-1) = -1 + 3 = 2
уmin = y(1) = 1 - 3 = - 2