0} \atop {x^2-3x+2\geq0} \right. \\
D=9-8=1; x_1= \frac{3-1}{2}=1;x_2= \frac{3+1}{2}=2;\\
\left \{ {{x<5} \atop { \left[ {{x\leq1} \atop {x\geq2}} \right. }} \right. x\in(-\infty;1]\bigcup[2;5)
x^2-3x+2<(5-x)^2;\\
x^2-3x+2<25-10x+x^2;\\
7x<23;\\
x< \frac{23}{7}=3 \frac{2}{7}
\\
\\
\\
x\in(-\infty;1]\bigcup[2;3\frac{2}{7});" alt="\sqrt{x^2-3x+2}<5-x;\\
D(f):
\left \{ {{5-x>0} \atop {x^2-3x+2\geq0} \right. \\
D=9-8=1; x_1= \frac{3-1}{2}=1;x_2= \frac{3+1}{2}=2;\\
\left \{ {{x<5} \atop { \left[ {{x\leq1} \atop {x\geq2}} \right. }} \right. x\in(-\infty;1]\bigcup[2;5)
x^2-3x+2<(5-x)^2;\\
x^2-3x+2<25-10x+x^2;\\
7x<23;\\
x< \frac{23}{7}=3 \frac{2}{7}
\\
\\
\\
x\in(-\infty;1]\bigcup[2;3\frac{2}{7});" align="absmiddle" class="latex-formula">