В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что D1D=√26, BB1=3 A1D1=4 найдите...

0 голосов
1.4k просмотров

В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что D1D=√26, BB1=3 A1D1=4 найдите длину ребра A1B1


Геометрия (29 баллов) | 1.4k просмотров
0

ссори, чуть не так..D1B= корень из 26 BB1=3 A1D1=4

0

скинь решение

0

да

Дан 1 ответ
0 голосов
Правильный ответ

В прямоугольном параллелепипеде ABCDA₁B₁C₁D₁ известно, что D₁B=√26,      BB₁=3     A₁D₁=4   Найдите длину ребра A₁B₁.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений

D²=a²+b²+c². Для данного параллелепипеда : 

DB² =DA₁²+BB₁²+AB₁² 

 (√26)²=4²+3²+AB₁² откуда

АВ₁=√(26-16-9)=1

-------------------

Если забыли данную выше формулу, т.Пифагора наверняка все помнят. 

Все ребра прямоугольного параллелепипеда перпендикулярны основаниям, а его грани  и диагональные сечения - прямоугольники. 

Из ∆ D₁B₁B по т.Пифагора D₁B₁²=(D₁B²-BB₁²=(26-9)=17

Из ∆ ABD по т.Пифаогра  АВ=√(DB₁² - AD₁²)=√(17-16)=1


image
(228k баллов)