1. Делаем сечение сферы плоскостью, содержащей прямоугольный треугольник. Это сечение - окружность, вписанная в треугольник.
2. Стороны прямоугольного треугольника (6,8,10), радиус вписанной в него окружности (6 + 8 - 10)/2 = 2.
3. Из центра этой окружности проводим перпендикуляр к плоскости треугольника. Ясно, что любая точка этой прямой равноудалена от точек окружности в сечении. Поэтому центр сферы тоже лежит на ней.
4. Радиус сферы, радиус окружности и отрезок перпендикулярной к плоскости сечения прямой, концами которого являются центры сферы и окружности, образуют прямоугольный треугольник с катетами 2 и 4. Поэтому, если обозначить радиус сферы R, то R^2 = 2^2 + 4^2 = 4 + 16 = 20;
5. Площадь сферы равна 4*pi*R^2 = 4*20*pi = 80*pi;