Если двузначное число разделить ** сумму его цифр, то в частном получится 3, а в остатке...

0 голосов
88 просмотров

Если двузначное число разделить на сумму его цифр, то в частном получится 3, а в остатке 7. Найдите это число. Задача решается с помощью уравнения.


Алгебра (3.2k баллов) | 88 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Двузначное число, в котором х десятков и у единиц запишем как 10х+у,
тогда условие задачи можно записать так:
(10х+у):(х+у)=3(ост.7)
10х+у=3(х+у)+7
10х+у=3х+3у+7
10х-3х=3у-у+7
7х-7=2у
7(х-1)=2у|:2
y=7(x-1)/2
Заметим, что х≠0, т.к. х-число десятков
х=1  у=7(1-1)/2=7*0/2=0/2=0         10
х=2  у=7(2-1)/2=7/2=3,5∉N
х=3  у=7(3-1)/2=7*2/2=7                 37
х=4  у=7(4-1)/2=7*3/2=21/2=10,5∈N
x=5  y=7(5-1)/2=7*4/2=7*2=14 -не является однозначным числом
..............
Получаем два варианта 10 и 37
10:(1+0)=10:1=10 -не подходит нашему условию  (делится без остатка)
37:(3+7)=37:10=3(ост. 7)
Ответ: 37



(237k баллов)
0

А можете объяснить: почему в начале именно 10х?

0

Уже поняла)