докажите, что биссектрисы, проведенные из углов треугольника, делят его ** три...

0 голосов
37 просмотров

докажите, что биссектрисы, проведенные из углов треугольника, делят его на три равновеликих треугольника


Геометрия (154 баллов) | 37 просмотров
Дан 1 ответ
0 голосов

Биссектисы треугольника сходятся все в одной точке, которая является центром вписанной в треугольник окружности. Высоты всех этих треугольников равны между собой h1=h2=h3=r и равны радиусу вписанной окружности.

Площадь каждого тр-ка равна половине произведения стороны на высоту S=a*h/2.

поскольку стороны тр-ка не равны между собой, то при равных высотах не равны и площади тр-ков.

Ответ:  биссектрисы, проведенные из углов треугольника, делят его на три равновеликих треугольника только в равностороннем треугольнике. Чтобы получить равновеликие треугольники проведите медианы.

(12.0k баллов)