Обозначим длину окружности L. L=2*PI*R(1). Периметр n - угольника (Рn) = длина стороны (An) * кол-во сторон (n). Кол-во сторон нам известно. Надо выразить An через длину окружности. По формуле An=2*R*sin(180/n). Из (1) формулы выражаем радиус: R=L/(2*PI). Подставляем её в формулу: An=2*sin(180/n)*L/(2*P)=sin(180/n)*L/PI. Теперь подставляем всё это в формулу периметра: Pn=n*sin(180/n)*L/PI. Вот формула, как найти периметр n - угольника.
Пример для 6 - угльника:
P6=6*sin30*L/PI=3*L/PI. А дальше всё просто: подставляешь значение длины окружности и значение PI и получаешь ответ.
//PI - число ПИ.