Обозначим стороны параллелепипеда как a, (a+d), (a+2d).
Диагональ (a+3d).
Диагональ равна √((a²) + (a+d)² + (a+2d)²).
После раскрытия скобок и приведения подобных, получим
(a+3d) = √(3а² + 6ad + 6d²).
Возведем обе части в квадрат:
а² + 6ad + 9d² = 3а² + 6ad + 6d²
2а² = 3d² d = а√(2/3).
Объём равен V = a* (a+d)* (a+2d) = а² + 3a²d + 2аd².
Подставив вместо d его значение, получим
V = a³(7 + 3√6).