Высота треугольника АВС пересекаются в точке H а медианы в точке M. Точка К середина...

0 голосов
93 просмотров

Высота треугольника АВС пересекаются в точке H а медианы в точке M. Точка К середина отрезка МН. Найдите площадь треугольника АКС если длина АВ=18корней из 2 , длина СН=12корней из 2 , а угол ВАС=45 ГРАДУСОВ ПОМОГИТЕ СРОЧНО ГИА!


Геометрия (44 баллов) | 93 просмотров
Дан 1 ответ
0 голосов
- два луча, образующие угол в 45 градусов;

- откладываем АВ=6 (любые 6 равных отрезков);

- проводим перпендикуляр ВВ1 на горизонтальную сторону угла;

ВВ1 и будет одной из высот ещё не построенного треугольника АВС;

- поскольку треугольник АВ1В равнобедренный прямоугольный, то его медиана B1C2, проведённая из вершины прямого угла и задаёт направление будущей второй высоты ∆АВС, проведённой к стороне АВ. Заодно по пути заметим, что длина этой медианы равна 3.
Где же искать вершину С?

Пока нам известно, что точка Н где-то на высоте ВВ1, направление СН перпендикулярно прямой АВ, СН=3 ( как и отрезок В1С2). Где Н? Где С?

Построив параллелограмм В1С2НС, мы и обнаружим вершину С и вторую высоту (СС1) треугольника АВС.

Поделив медиану С2С на три равные части, легко отыскать точку М. 

Из точек С2, М, К опустим перпендикуляры на сторону АС. Построим треугольник АКС, площадь которого требуется найти в задаче.

ММ1:С2D = 2:3

ММ1 = C2D = ∙ 1,5 =

C2D = HB1 = B1C = 1,5

Средняя линия КК1 трапеции М1МНВ1 равна полусумме ММ1 и НВ1

КК1 = 0,5 × (1,5

АС = АВ1 + В1С = 31,5

S∆АКС = 0,5×АС×КК1 = 0,5×4,5

Ответ: 5,625

Решить уравнение

(х + 4)(х + 5)3 = (х + 5)(х + 4)3

Решение.

(х + 4)(х + 5)3 - (х + 5)(х + 4)3= 0;

(х + 4)(х + 5)((х + 5)2 – (х + 4)2) = 0;

(х + 4)(х + 5)(х + 5 – х – 4)(х + 5 + х + 4) = 0;

(х + 4)(х + 5)(2х + 9) = 0.

Произведение двух или нескольких выражений равно нулю, если значение хотя бы одного из этих выражений равно нулю, а другие при этом не теряют смысла.

Исходное уравнение равносильно совокупности уравнений:



Ответ: -5; -4,5; -4.

Один из моих учеников предложил другой путь. 

(х + 4)(х + 5)3 = (х + 5)(х + 4)3

Легко видеть, что числа -4 и -5 являются решениями данного уравнения:

(-4 + 4)(-4 + 5)3 = (-4 + 5)(-4 + 4)3 - верное равенство;

(-5 +4)(-5 + 5)3 = (-5 + 5)(-5 +4)3 - тоже верное равенство.

Осталось проверить, есть ли решения среди значений значений х, отличных от -4 и -5.

Если обе части этого уравнения разделить на одно и то же число (x+4)(x+5), не равное нулю, то получим уравнение, равносильное данному на множестве чисел, не равных ни -5, ни -4.

(х + 5)2 = (х +4)2

Квадраты чисел равны в том и только в том случае, если эти числа либо равны, либо противоположны.

х + 5 = х + 4 или х + 5 = -х -4

или х = -4,5

Ответ: -5; -4,5; -4. 
(78 баллов)