|x|>5 что такое модуль: |x|==0} \atop {-x, x<0}} \right." alt="\left \{ {{x, x>=0} \atop {-x, x<0}} \right." align="absmiddle" class="latex-formula">
=0} \atop {x>5}} \right." alt="\left \{ {{x>=0} \atop {x>5}} \right." align="absmiddle" class="latex-formula">
=0} \atop {x \exists (5;+\infty)}} \right." alt="\left \{ {{x>=0} \atop {x \exists (5;+\infty)}} \right." align="absmiddle" class="latex-formula">
x (-;-5)(5;+).
Ответ: (-\infty;-5)(5;+\infty).
Аналогично с остальными:
|x|>=5
=0} \atop {x>=5}} \right." alt="\left \{ {{x>=0} \atop {x>=5}} \right." align="absmiddle" class="latex-formula">
=0} \atop {x \exists [5;+\infty)}} \right." alt="\left \{ {{x>=0} \atop {x \exists [5;+\infty)}} \right." align="absmiddle" class="latex-formula">
x (-<</var>;-5][5;+).
...
|x|<-5</p>
По определению, модуль - неотрицательное число, значит х э пустое множество (перечеркнутый круг).
|x|<=0</p>
По выше сказаному определяем, что х=0.
|x|>-5
Если |x|>=0, тогда
=0} \atop {|x|>-5}} \right." alt="\left \{ {{|x|>=0} \atop {|x|>-5}} \right." align="absmiddle" class="latex-formula">
|x|>=0
x (-;+).
|2х|<=6</p>
=0} \atop {2x<=6}} \right." alt="\left \{ {{2x>=0} \atop {2x<=6}} \right." align="absmiddle" class="latex-formula">
=-6}} \right." alt="\left \{ {{2x<0} \atop {2x>=-6}} \right." align="absmiddle" class="latex-formula">
=0} \atop {x<=3}} \right." alt="\left \{ {{x>=0} \atop {x<=3}} \right." align="absmiddle" class="latex-formula">
=-3}} \right." alt="\left \{ {{x<0} \atop {x>=-3}} \right." align="absmiddle" class="latex-formula">
=0} \atop {x \exists [0;3]}} \right." alt="\left \{ {{x>=0} \atop {x \exists [0;3]}} \right." align="absmiddle" class="latex-formula">
x [-3;3].
Ответ: [-3;3]