Тангенс острого угла ВАС прямоугольного треугольника АВС (угол С=90 градусов) равен 5/12,...

0 голосов
61 просмотров

Тангенс острого угла ВАС прямоугольного треугольника АВС (угол С=90 градусов) равен 5/12, а расстояние от центра описанной около этого треугольника окружности до катета АС=2.5. Найдите периметр этого треугольника.


Геометрия (21 баллов) | 61 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если около прямоугольного треугольника описать окружность, то гипотенуза АВ будет диаметром. А точка О - центр окружности - середина этой гипотенузы.
Из точки О проведем перпендикуляр на сторону АС. Получим точку К.
тангенс угла ВАС отношению катета ОК к катету АК.
Отсюда катет АК=ОК : тангенс угла ОАС  ( или ВАС что одно и то же)
= 6
Гипотенузу АО найдем по теоереме Пифагора √6²+2,5²=√42,25=6,5
Это радиус. Вся АВ в два раза больше = 13.
Так как АО=ОС, то треугольник АОС равнобедренный и точка к середина АС. Значит АС в два раза больше чем АК, т.е АС=12. По теоереме Пифагора ВС=√13²-12²=√169-144=5
Периметр 13+12+5=32

(413k баллов)