Перпендикуляры опущенные из двух вершин прямоугольника ** его диагональ делят ее ** три...

0 голосов
122 просмотров

Перпендикуляры опущенные из двух вершин прямоугольника на его диагональ делят ее на три равные части. Меньшая сторона прямоугольника равна а. Найдите длину большей стороны.


Геометрия (196 баллов) | 122 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обозначим каждую часть диагонали х
Вся диагональ 3х
Имеем равнобедренный треугольник у которого основание  равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х²
Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна
1/2 ·3х ·√а²-х²

С драгой стороны вторая сторона прямоугольника по теореме Пифагора
равна√(3х)²-а²
Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон

1/2 · а ·√9х²-а²

ПРиравняем и решим уравнение
9х^4=a^4
3x²=a²
x=a√3/3
диагональ равна а·√3
вторая сторона по теореме ПИфагора а√2

(414k баллов)
0

Спасибо!