Биссектриса СМ треугольника АВС делит сторону АВ ** отрезки АМ=10 и МВ=18.касательная к...

0 голосов
81 просмотров

Биссектриса СМ треугольника АВС делит сторону АВ на отрезки АМ=10 и МВ=18.касательная к описанной окружности треугольника АВС проходящая через точку С пересекает прямую АВ в точке D.найдите CD


Геометрия (15 баллов) | 81 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Это решение дается мною второй раз в ответ      на вопросы разных пользователей.  
Решение:
 СD - отрезок касательной. 
Продолжение АВ = АD - секущая.
Рассмотрим рисунок, данный во вложении. Иногда рисунки пропадают, поэтому даю расположение обозначений, чтобы решение было понято и без рисунка.
На секущей АД расположение обозначений идет в порядке:
А-Е-В-D, А и В - на окружности.  СЕ- биссектриса,
АЕ=18, ВЕ=10
Угол, образованный касательной ДС к окружности и секущей ВС, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.
Следовательно, угол DАС=углу ВСD.
В треугольниках АDС и ВDС по два равных угла:
угол D - общий, угол ВСD =углу DАС, следовательно, они подобны. 
В подобных треугольниках соответственные стороны лежат против равных углов.
Найдем отношение сторон в треугольниках.
Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
Следовательно, АС:ВС=18:10
Из подобия треугольников ВDС и СDА 
:ВD=18/10
DС=18*ВD/10
Пусть ВD - внешняя часть секущей АD - равна х
Тогда DС=18х/10
и АD=АЕ+ВЕ+х=28+х
Квадрат длины  отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть. 
 DС²=ВД*АD
(18х/10)²=х(28+х)
324х²:100=28х+х²
Домножив обе части уравнения на 100, получим:
324х²=2800х+100х²
224х²=2800х 
х=2800х:224х
х=12,5 см
=12,5*(18/10)=22,5 см
 --------------
[email protected]  


image
(228k баллов)
0

Гений математической мысли! Спасибо от всей души, Ваша помощь неоценима.