Т. к. КС и АМ - высоты, треугольгики АКС и АМС будут прямоугольными. Т.
к. АВС - равноберенный, углы при его основании равны, т. е. ВАС = ВСА.
Следовательно, в прямоугольных треугольниках АКС и АМС равны гипотенузы
(общая сторона) и прилегающие к ней острые углы. Значит, треугольники
АКС и АМС равны, и АК = МС. Следовательно, КВ = АВ - АК = ВС - МС = ВМ,
что и требовалось доказать.