2 варианта:)и оба задания помогите:))
Вариант3 1. а) б) 2. \left \{ {{x=-2} \atop {y=-1}} \right. \\ p(x,y)=x^3-3x^2y+xy^2-y^3+6x^2y+xy^2-x^3=\\ =x^3-x^3-y^3+(6-3)x^2y+(1+1)xy^2=\\ =-y(1+3x^2+2xy);\\ p(-2,-1)=-(-1)\cdot\{1+3\cdot(-2)^2+2\cdot(-2)\cdot(-1)\}=\\ =1\cdot\{1+4+4)=1+4+4=5" alt="p(-2,-1)-?\\ p(-2,-1)==> \left \{ {{x=-2} \atop {y=-1}} \right. \\ p(x,y)=x^3-3x^2y+xy^2-y^3+6x^2y+xy^2-x^3=\\ =x^3-x^3-y^3+(6-3)x^2y+(1+1)xy^2=\\ =-y(1+3x^2+2xy);\\ p(-2,-1)=-(-1)\cdot\{1+3\cdot(-2)^2+2\cdot(-2)\cdot(-1)\}=\\ =1\cdot\{1+4+4)=1+4+4=5" align="absmiddle" class="latex-formula"> Вариант 4 1. а) б) 2. \left \{ {{x=-3} \atop {y=1}} \right. \\ p(-3;1)=2\cdot1^4+4\cdot(-3)\cdot1(-3+1^2)=\\ =2-12\cdot(-2)=2+24=26" alt="p(-3;1)-?\\ p(x,y)=x^4+4x^2y-6x^2y^2+4xy^3-x^4+y^4+6x^2y^2+y^4=\\ =x^4-x^4-6x^2y^2+6x^2y^2+y^4+y^4+4x^2y+4xy^3=\\ =2y^4+4xy(x+y^2);\\ p(-3,1)=> \left \{ {{x=-3} \atop {y=1}} \right. \\ p(-3;1)=2\cdot1^4+4\cdot(-3)\cdot1(-3+1^2)=\\ =2-12\cdot(-2)=2+24=26" align="absmiddle" class="latex-formula">