![image](https://tex.z-dn.net/?f=+%5Cfrac%7Bx-6%7D%7B-7-x%7D++%5Cleq+-2+%5C%5C++%5C%5C++%5Cfrac%7Bx-6%2B2%28-7-x%29%7D%7B-7-x%7D+%5Cleq+0++%5C%5C++%5C%5C++%5Cfrac%7Bx-6-14-2x%7D%7B-7-x%7D+%5Cleq+0+%5C%5C++%5C%5C++%5Cfrac%7B-x-20%7D%7B-7-x%7D+%5Cleq+0+%5C%5C++%5C%5C++%5Cfrac%7Bx%2B20%7D%7B7%2Bx%7D++++%5Cleq+0+%5C%5C++%5C%5C++%5C%5C++%5Cleft+%5C%7B+%7B%7Bx%2B20+%5Cleq+0%7D+%5Catop+%7B7%2Bx%3E0%7D%7D+%5Cright.++%5Cleft+%5C%7B+%7B%7Bx+%5Cleq+-20%7D+%5Catop+%7Bx%3E-7%7D%7D+%5Cright.++%5C%5C++%5C%5C++%5Cleft+%5C%7B+%7B%7Bx%2B20+%5Cgeq0+%7D+%5Catop+%7B7%2Bx%3C0%7D%7D+%5Cright.++%5Cleft+%5C%7B+%7B%7Bx+%5Cgeq+-20%7D+%5Catop+%7Bx%3C-7%7D%7D+%5Cright.+)
0}} \right. \left \{ {{x \leq -20} \atop {x>-7}} \right. \\ \\ \left \{ {{x+20 \geq0 } \atop {7+x<0}} \right. \left \{ {{x \geq -20} \atop {x<-7}} \right. " alt=" \frac{x-6}{-7-x} \leq -2 \\ \\ \frac{x-6+2(-7-x)}{-7-x} \leq 0 \\ \\ \frac{x-6-14-2x}{-7-x} \leq 0 \\ \\ \frac{-x-20}{-7-x} \leq 0 \\ \\ \frac{x+20}{7+x} \leq 0 \\ \\ \\ \left \{ {{x+20 \leq 0} \atop {7+x>0}} \right. \left \{ {{x \leq -20} \atop {x>-7}} \right. \\ \\ \left \{ {{x+20 \geq0 } \atop {7+x<0}} \right. \left \{ {{x \geq -20} \atop {x<-7}} \right. " align="absmiddle" class="latex-formula">
первая система общих корней не имеет
x∈[-20; -7)
13 целых корней
===================================================================
===================================================================
![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B%7Cx-1%7C+%5Cleq+6%7D+%5Catop+%7B%28+%5Cfrac%7B1%7D%7B7%7D%29%5E%7B0%2C5x-1%7D%3E1+%7D%7D+%5Cright.+)
1 }} \right. " alt=" \left \{ {{|x-1| \leq 6} \atop {( \frac{1}{7})^{0,5x-1}>1 }} \right. " align="absmiddle" class="latex-formula">
1. Пусть |x-1| при раскрытии примем <0 => x-1<0 => x<1, тогда<br>
![image](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B-x%2B1+%5Cleq+6%7D+%5Catop+%7B%28+%5Cfrac%7B1%7D%7B7%7D%29%5E%7B0%2C5x-1%7D%3E1+%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7Bx+%5Cgeq+-5%7D+%5Catop+%7B%28+%5Cfrac%7B1%7D%7B7%7D%29%5E%7B0%2C5x-1%7D%3E%28+%5Cfrac%7B1%7D%7B7%7D%29%5E0++%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7Bx+%5Cgeq+-5%7D+%5Catop+%7B+0%2C5x-1%3C0++%7D%7D+%5Cright.++%5Cleft+%5C%7B+%7B%7Bx+%5Cgeq+-5%7D+%5Catop+%7Bx+%3C+2%7D%7D+%5Cright.+)
1 }} \right. \left \{ {{x \geq -5} \atop {( \frac{1}{7})^{0,5x-1}>( \frac{1}{7})^0 }} \right. \left \{ {{x \geq -5} \atop { 0,5x-1<0 }} \right. \left \{ {{x \geq -5} \atop {x < 2}} \right. " alt="\left \{ {{-x+1 \leq 6} \atop {( \frac{1}{7})^{0,5x-1}>1 }} \right. \left \{ {{x \geq -5} \atop {( \frac{1}{7})^{0,5x-1}>( \frac{1}{7})^0 }} \right. \left \{ {{x \geq -5} \atop { 0,5x-1<0 }} \right. \left \{ {{x \geq -5} \atop {x < 2}} \right. " align="absmiddle" class="latex-formula">
6 целых корней (1 не входит, т.к. мы считаем модуль отрицательным)
2. Пусть
![image](https://tex.z-dn.net/?f=%7Cx-1%7C+%5Cgeq+0+%3D%3E+x+%5Cgeq+1)
x \geq 1" alt="|x-1| \geq 0 => x \geq 1" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7Bx-1+%5Cleq+6%7D+%5Catop+%7B%28+%5Cfrac%7B1%7D%7B7%7D%29%5E%7B0%2C5x-1%7D%3E%28+%5Cfrac%7B1%7D%7B7%7D+%29%5E0+%7D%7D+%5Cright.%5Cleft+%5C%7B+%7B%7Bx+%5Cleq+7%7D+%5Catop+%7B+0%2C5x-1%3C0%7D%7D+%5Cright.++%5Cleft+%5C%7B+%7B%7Bx+%5Cleq+7%7D+%5Catop+%7Bx%3C2%7D%7D+%5Cright.+)
( \frac{1}{7} )^0 }} \right.\left \{ {{x \leq 7} \atop { 0,5x-1<0}} \right. \left \{ {{x \leq 7} \atop {x<2}} \right. " alt="\left \{ {{x-1 \leq 6} \atop {( \frac{1}{7})^{0,5x-1}>( \frac{1}{7} )^0 }} \right.\left \{ {{x \leq 7} \atop { 0,5x-1<0}} \right. \left \{ {{x \leq 7} \atop {x<2}} \right. " align="absmiddle" class="latex-formula">
Количество целых корней от 1 до 2(не включительно) = 1 корень
Ответ: 7 корней