Рисунок такой: нижнюю Основу обозначаем АД, верхнюю ВС, проводим диагональ ВД.
Описуем трапецию, гда точка О есть центр круга и лежит на средине АД.
проведем з В высоту на АД, ВК перпендикулярнак АД.
Нам нужно найти ВК, что бы потом найти ВА и ВД.
Соеденим точку В с точкой О. ВО - радиус круга. Поскольку АД проходит через центр круга, то АД есть диаметр. Радиус половина диаметра, поєтому АО = ОР = 12/2 = 6см. АО также = ВО = 6 см.
Рассмотрим треугольник ВКО, где угол К = 90 градусов.
За теоремой Пифагора гайдем ВК:
ВК² = ВО² - КО². Найдем КО:
АК = (АД - ВС) / 2 = (12 - 10) / 2 = 1
КО = АО - АК = 6 - 1 = 5
Значит
ВК² = 36 - 25 = 9
ВК = 3
С треугольника КВД найдем ВД:
ВД² = ВК² + КД², где КД = 5 + 6 = 11
ВД² = 9 + 121 = 130
ВД = √130
С треугол АВК найдем АВ:
АВ² = ВК² + АК²
АВ² = 9 + 1
АВ² = 10
АВ = √10