АВ=АС=2√2, ВС=2
построим дополнительную т.Д симметрично относительно ВС, получаем прямую призму с основанием равносторонним параллелограммом, в котором нам наобходимо найти угол ДВА1
ВД=ДС=2√2
ВА1=√(АА1²+АВ²)=√(1+8)=√9=3
АД²+ВС²=2(АВ²+ВД²)
АД²=2(АВ²+ВД²)-ВС²=2(8+8)-4=28
А1Д²=АА1²+АД²=1+28=29
рассмотрим ΔДВА1 ВД=2√2, ВА1=3, А1Д=√29 по т. косинусов
А1Д²=ВА1²+ВД²-2ВА1*ВДcosДВА1
cosДВА1=(ВА1²+ВД²- А1Д²)/2ВА1*ВД
cosДВА1=(9+8-29)/(2*3*2√2)=-12/(12√2)=-1/√2
<ДВА1=135°</p>