Довести, що вираз (x+3)(x^2-3x+9)-(x^2-6)(x-1) набуває додатних значень при всіх дійсних...

0 голосов
96 просмотров

Довести, що вираз (x+3)(x^2-3x+9)-(x^2-6)(x-1) набуває додатних значень при всіх дійсних значеннях Х. Якого найменшого значення набуває цей вираз і при якому значенні Х?


Алгебра (19 баллов) | 96 просмотров
Дан 1 ответ
0 голосов
(x+3)(x^{2}-3x+9)-(x^{2}-6)(x-1)=
= x^{3}-3x^{2}+9x+3x^{2}-9x+27-x^{3}+x^{2}+6x-6=x^{2}+6x+21
Запишемо рівняння у такому вигляді:
x^{2}+6x+9-9+21=(x+3)^{2}+12
З цього виразу видно, що він завжди більший за 0 при будь-якому дійсному Х, тому що (x+3)^{2} \geq 0 завжди, а сума додатних чисел завжди є додатним числом.
При х=-3 вираз набуває найменшого значення 12.
(7.1k баллов)