а)решите уравнение сos2x+3sin(в квадрате)x=1,25 б) найдите все корни этого уравнения,...

0 голосов
32 просмотров

а)решите уравнение сos2x+3sin(в квадрате)x=1,25 б) найдите все корни этого уравнения, принадлежащие отрезку (п; 5п/2)

решение нужно подробное


Алгебра (17 баллов) | 32 просмотров
Дан 1 ответ
0 голосов

По формуле: 

cos2x=cos^2x-sin^2x

Зная это получаем:

cos^2x-sin^2x+3sin^2x=1,25 \\ cos^2x+2sin^2=1,25 \\ cos^2x+sin^2x+sin^2x=1,25

Известно что: 

cos^x+sin^2x=1

отсюда получаем:

1+sin^2x=1,25 sin^2x=0,25 \\sin^2x=\frac{1}{4} \\ x= ^+_{-}\frac{1}{2} 

Получаем 2 уравнения:

1) \ sinx=\frac{1}{2}  это табличное значение синуса и получается 2 решения:

 x_1=\frac{\pi}{6}+2\pi k, k \in Z \\x_2=\frac{5\pi}{6}+2\pi k, k \in Z 

 

2) sin x=-\frac{1}{2} аналогично получаем 2 решения:

 x_3=\frac{7\pi}{6}+2\pi k, k \in Z \\x_4=\frac{11\pi}{6}+2\pi k, k \in Z

Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:

x_1=\frac{\pi}{6}+\pi k, k \in Z \\x_2=\frac{5\pi}{6}+\pi n, n \in Z 

 Теперь надо найти при каких значениях k и n решения лежат на отрезке [0; \frac{5\pi}{2}]

Для этого решаем 2 неравенства

1)  0<\frac{\pi}{6}+\pi k < \frac{5\pi}{2} \\ -\frac{\pi}{6}<\pi k < \frac{5\pi}{2}-\frac{\pi}{6} \\ -\frac{\pi}{6}<\pi k < \frac{14\pi}{6} \\ -\frac{\pi}{6\pi}

 Так как к у нас принадлежит целым числам, то получается что к=0,1,2

2)  Теперь ищем n, аналогично:

 0<\frac{5\pi}{6}+\pi n < \frac{5\pi}{2} \\ -\frac{5\pi}{6}<\pi n < \frac{5\pi}{2}-\frac{5\pi}{6} \\ -\frac{5\pi}{6}<\pi n < \frac{10\pi}{6} \\ -\frac{5\pi}{6\pi }

Поскольку n принадлежит целым числам, то получается что n=0,1

Ответ: 

x_1=\frac{\pi}{6}+\pi k, k=0,1,2 \\ \\ x_2=\frac{5\pi}{6}+\pi n, n=0,1 

 

(998 баллов)