Если ctg b=5/12, то чему будет равен cos b?напишите с объяснениями.может какае-та...

0 голосов
44 просмотров

Если ctg b=5/12, то чему будет равен cos b?
напишите с объяснениями.
может какае-та специальная формула есть.


Геометрия (169 баллов) | 44 просмотров
Дано ответов: 2
0 голосов

Будем использовать формулы:
1+tg^2 \alpha = \frac{1}{cos^2\alpha}
tg \alpha = \frac{1}{ctg \alpha}
выразим из первой cosa:
imagecos\alpha= \sqrt{ \frac{1}{1+tg^2 \alpha}} =>cos\alpha= \sqrt{ \frac{1}{1+ \frac{1}{ctg^2 \alpha} }}" alt="1+tg^2 \alpha = \frac{1}{cos^2\alpha} =>cos\alpha= \sqrt{ \frac{1}{1+tg^2 \alpha}} =>cos\alpha= \sqrt{ \frac{1}{1+ \frac{1}{ctg^2 \alpha} }}" align="absmiddle" class="latex-formula">
подставляя в формулу значение ctgb, получим:
cosb= \sqrt{ \frac{1}{1+ \frac{1}{ \frac{5}{12}}}}=\sqrt{ \frac{1}{1+ \frac{12}{5}}}=\sqrt{ \frac{1}{ \frac{17}{5}}}= \sqrt{ \frac{5}{17}}
ответ: cosb= \sqrt{ \frac{5}{17}}

(7.9k баллов)
0 голосов

Ctgβ = cosβ/sinβ = 5/12, исходя из этого отношения введем обозначения 
cosβ = 5x, sinβ = 12x
по основному тригонометрическому тождеству
sin²β + cos²β = 1
144x² + 25x² = 1
169x² = 1
x² = 1/169
x = 1/13
cosβ = 5x = 5/13