![image](https://tex.z-dn.net/?f=Sin%5E2x%5Ccdot+Cos%5E2x%3D%28Sinx%5Ccdot+Cosx%29%28Sinx%5Ccdot+Cosx%29%3D%5Cfrac%7B1%7D%7B4%7D%28Sin2x%29%28Sin2x%29%3D+%5C%5C%0A%3D%5Cfrac%7B1%7D%7B4%7DSin%5E22x+%5C%5C%0ACos%5E2%5Calpha+-Sin%5E2%5Calpha%3DCos2%5Calpha+%5C+%5C+%3D%3E+%5C+%5C+1-2Sin%5E2%5Calpha%3DCos2%5Calpha+%5C+%5C+%3D%3E+%5C%5C%0A%3D%3E+%5C+%5C+Sin%5E2%5Calpha%3D%5Cfrac%7B1%2BCos2%5Calpha%7D%7B2%7D+%5C%5C%0A+%5Cint+%7BSin%5E2x%5Ccdot+Cos%5E2x%7D+%5C%2C+dx+%3D%5Cfrac%7B1%7D%7B8%7D%5Cint+%7B%281%2BCos4x%29dx%3D%5Cfrac%7B1%7D%7B8%7D%28+%5Cint%7B%7Ddx%2B%5Cint%7BCos4x%7Ddx%29)
\ \ 1-2Sin^2\alpha=Cos2\alpha \ \ => \\
=> \ \ Sin^2\alpha=\frac{1+Cos2\alpha}{2} \\
\int {Sin^2x\cdot Cos^2x} \, dx =\frac{1}{8}\int {(1+Cos4x)dx=\frac{1}{8}( \int{}dx+\int{Cos4x}dx)" alt="Sin^2x\cdot Cos^2x=(Sinx\cdot Cosx)(Sinx\cdot Cosx)=\frac{1}{4}(Sin2x)(Sin2x)= \\
=\frac{1}{4}Sin^22x \\
Cos^2\alpha -Sin^2\alpha=Cos2\alpha \ \ => \ \ 1-2Sin^2\alpha=Cos2\alpha \ \ => \\
=> \ \ Sin^2\alpha=\frac{1+Cos2\alpha}{2} \\
\int {Sin^2x\cdot Cos^2x} \, dx =\frac{1}{8}\int {(1+Cos4x)dx=\frac{1}{8}( \int{}dx+\int{Cos4x}dx)" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=%5Cint+%7B%7Ddx%3Dx+%5C%5C%0A%5Cint+%7BCos4x%7D+dx%3A+%5C%5C%0A4x%3Du+%5C+%5C+%3D%3E+%5C+%5C+4xdx%3Ddu+%5C+%5C+%3D%3E+%5C+%5C+%5Cfrac%7Bdu%7D%7B4%7D%3Ddx+%5C+%5C+%3D%3E+%5C%5C%0A%3D%3E+%5C+%5C+%5Cint%7BCos4x%7Ddx%3D%5Cfrac%7B1%7D%7B4%7D%5Cint%7BCosu%7Ddu%3D%5Cfrac%7BSinu%7D%7B4%7D%3D%5Cfrac%7BSin4x%7D%7B4%7D+%5C%5C%0A%5Cint+%7BCos4x%7D+dx%3D%5Cfrac%7BSin4x%7D%7B4%7D)
\ \ 4xdx=du \ \ => \ \ \frac{du}{4}=dx \ \ => \\
=> \ \ \int{Cos4x}dx=\frac{1}{4}\int{Cosu}du=\frac{Sinu}{4}=\frac{Sin4x}{4} \\
\int {Cos4x} dx=\frac{Sin4x}{4}" alt="\int {}dx=x \\
\int {Cos4x} dx: \\
4x=u \ \ => \ \ 4xdx=du \ \ => \ \ \frac{du}{4}=dx \ \ => \\
=> \ \ \int{Cos4x}dx=\frac{1}{4}\int{Cosu}du=\frac{Sinu}{4}=\frac{Sin4x}{4} \\
\int {Cos4x} dx=\frac{Sin4x}{4}" align="absmiddle" class="latex-formula">