или
![image](https://tex.z-dn.net/?f=y%27%28x%29%3C0+%5C+%5C+%5C+x%5Cin%28-%5Cfrac%7B1%7D%7B3%7D%3B2%29%3B%5C%5C%0Ay%27%28x%29%3E0+%5C+%5C+%5C+x%5Cin%28-%5Cinfty%3B-%5Cfrac%7B1%7D%7B3%7D%29%5Cbigcup%282%3B%2B%5Cinfty%29%3B%5C%5C%0A)
0 \ \ \ x\in(-\infty;-\frac{1}{3})\bigcup(2;+\infty);\\
" alt="y'(x)<0 \ \ \ x\in(-\frac{1}{3};2);\\
y'(x)>0 \ \ \ x\in(-\infty;-\frac{1}{3})\bigcup(2;+\infty);\\
" align="absmiddle" class="latex-formula">
x=2 - точка локального минимума
y(2)=(2-2)^2(2·2+3)+5=0^2·7+5=0+5=5;