Разделим правую и левую части уравнения на x²
x^4 − 2x³ − 6x² − 2x + 1 = 0
x² x² x² x² x²
Сократим дроби
x² − 2x − 6 − 2 + 1 = 0
x x²
Сгруппируем слагаемые в левой части равенства
x² + 1 − 2x − 2 − 6 = 0
x² x
Вынесем множители за скобки
(x² + 1) + 2(x+ 1)−6 = 0 (1)
x² x
Пусть x+ 1 = y; тогда (x+ 1)² = y² → x²+ 2·x·1 + 1 = y² → x² + 1 = y²− 2
x x x x² x²
Подставим в уравнение (1) найденные значения для скобок
(y²− 2 ) + 2y− 6 = 0 → y² − 2 + 2y− 6 = 0 → y² + 2y− 8 = 0
y² + 2y− 8 = 0; D = 4+32 = 36; y1=4 y2=-2
Делаем обратную подстановку
x + 1=4 x + 1= -2
x x
Решаем эту систему урав-й получаем ответ: x1 = -1