Сократить:

0 голосов
91 просмотров

Сократить:
\frac{6 x^{2} -5 x+1}{4 x^{2} -1}


Алгебра (552 баллов) | 91 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

6x²-5x+1=0
D=b²-4ac
D=25-24
D=1
√D=1

x1= \frac{5-1}{12} = \frac{1}{3} \\ \\ x2= \frac{5+1}{12} = \frac{6}{12} = \frac{1}{2}

\frac{6(x- \frac{1}{3})(x- \frac{1}{2}) }{(2x-1)(2x+1)} = \frac{(3x-1)(2x-1)}{(2x-1)(2x+1)} = \frac{3x-1}{2x+1}

(302k баллов)
0

спасибо)

0

Выручил)

0

Спасибо)

0 голосов

В числители кадратное уранение, разложим его на множители 
6x^{2}-5x+1=0
найдем дискриминант и корни
D=25-4*6*1=25-24=1
x_{1}=\frac{1}{2}x_{2}=\frac{1}{3}  и теперь запишем получившееся выражение 6(x-\frac{1}{2})(x-\frac{1}{3}) умножим 6 на первую скобку: (6x-3)(x-\frac{1}{3}) теперь из первой скобки вынесим общий множитель за скобки и потом этот множитель умножим на вторую скобку  
3(2x-1)(x-\frac{1}{3})=(2x-1)(3x-1)  

теперь в знаменателе у нас разность квадратов разложим по формуле сокращенного умножения::
4x^{2}-1=(2x-1 )(2x+1)

теперь запишем получившуюся дробь и сократим (2x-1):
\frac{(2x-1)(3x-1)}{(2x-1)(2x+1)}\frac{3x-1}{2x+1}

(232 баллов)