0\\\\
D=9-4*1*5<0\\\\
\frac{1}{log_{3}2}+log_{3}(x^2+3x+5)=2\\\\
log_{3}(x^2+3x+5)=2-\frac{1}{log_{3}2}\\\\
x^2+3x+5=3^{2-\frac{1}{log_{3}2}}\\\\
x^2+3x+5=\frac{9}{3^{\frac{1}{log_{3}2}}}\\\\
x^2+3x+5 - \frac{9}{3^{\frac{1}{log_{3}2}}}=0\\\\
D=9-4*1*(5-\frac{9}{3^{\frac{1}{log_{3}2}}}<0" alt="log_{2}3+log_{3}(x^2+3x+5)=2\\\\
x^2+3x+5>0\\\\
D=9-4*1*5<0\\\\
\frac{1}{log_{3}2}+log_{3}(x^2+3x+5)=2\\\\
log_{3}(x^2+3x+5)=2-\frac{1}{log_{3}2}\\\\
x^2+3x+5=3^{2-\frac{1}{log_{3}2}}\\\\
x^2+3x+5=\frac{9}{3^{\frac{1}{log_{3}2}}}\\\\
x^2+3x+5 - \frac{9}{3^{\frac{1}{log_{3}2}}}=0\\\\
D=9-4*1*(5-\frac{9}{3^{\frac{1}{log_{3}2}}}<0" align="absmiddle" class="latex-formula">
нет решений