Докажите, что многочлен x²+2x+y²-4y+6 при любых значениях входящих в него переменных...

0 голосов
97 просмотров

Докажите, что многочлен x²+2x+y²-4y+6 при любых значениях входящих в него переменных принимает положительные значения.


Математика | 97 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

X²+2x+y²-4y+6 =(x²+2x+1)+(y²-4y+4)+1 =(x+1)²+(y-2y)²+1>0
квадрат любого числа всегда неотрицательный, а мы получили, что к двум квадратам прибавляется положительное число, значит результат положительный

(30.1k баллов)
0

хз

0

ага, опечатка у меня

0

так тоже самое, выделяй полные квадраты
x²-4x+y²-4y+9=(x²-4x+4)-4+(y²-4y+4)-4+9=.....