x\neq\frac{\pi k}{2}, k\in Z\\
x\in(\frac{\pi k}{2};\frac{\pi+\pi k}{2});\\
tgx=t;\ \ ctgx=\frac{1}{tgx}=\frac1t;\\
\frac2t-3t+5=0;\\
t\neq0;\pm\infty;\\
-3t^2+5t+2=0;\\
3t^2-5t-2=0;\\
D=b^2-4\cdot a\cdot c=(-5)^2-4\cdot3\cdot(-2)=25+24=49=(\pm7);\\
" alt="2ctgx-3tgx+5=0;\\
D(f): \left \{ {{x\neq \pi k} \atop {x\neq\frac\pi2+\pi l}} \right. \ k,l\in Z==>x\neq\frac{\pi k}{2}, k\in Z\\
x\in(\frac{\pi k}{2};\frac{\pi+\pi k}{2});\\
tgx=t;\ \ ctgx=\frac{1}{tgx}=\frac1t;\\
\frac2t-3t+5=0;\\
t\neq0;\pm\infty;\\
-3t^2+5t+2=0;\\
3t^2-5t-2=0;\\
D=b^2-4\cdot a\cdot c=(-5)^2-4\cdot3\cdot(-2)=25+24=49=(\pm7);\\
" align="absmiddle" class="latex-formula">