![image](https://tex.z-dn.net/?f=a_n%3Da_1%2Bd%28n-1%29%3B%5C%5C%0Aa_1%3D-70%3B%5C+a_2%3D-53%3B%5C%5C%0Ad%3Da_2-a_1%3D-53-%28-70%29%3D17%5C%5C%0Aa_n%3D-70%2B17%28n-1%29%3D-70%2B17n-17%3D17n-87%3B%5C+n%5C+E%5C+Z%3B%5C%5C%0Aa_n%3E0%5C%5C%0A17n-87%3E0%5C%5C%0A17n%3E87%5C%5C%0An%3E5%5Cfrac%7B2%7D%7B17%7D%5C%5C%0An%3D5%2C%5C+a_5%3D17%2A5-87%3D-2%3C0%5C%5C%0An%3D6%2C%5C+a_6%3D17%2A6-87%3D15%3E0%5C%5C%0A)
0\\
17n-87>0\\
17n>87\\
n>5\frac{2}{17}\\
n=5,\ a_5=17*5-87=-2<0\\
n=6,\ a_6=17*6-87=15>0\\
" alt="a_n=a_1+d(n-1);\\
a_1=-70;\ a_2=-53;\\
d=a_2-a_1=-53-(-70)=17\\
a_n=-70+17(n-1)=-70+17n-17=17n-87;\ n\ E\ Z;\\
a_n>0\\
17n-87>0\\
17n>87\\
n>5\frac{2}{17}\\
n=5,\ a_5=17*5-87=-2<0\\
n=6,\ a_6=17*6-87=15>0\\
" align="absmiddle" class="latex-formula">
Ответ: 15, 6-й член последовательности