В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 18, а...

0 голосов
69 просмотров

В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 18, а боковые рёбра равны 15. Точка R принадлежит ребру MB, причём MR:RB=2:1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки C и R параллельно прямой BD.


Геометрия (109 баллов) | 69 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть b=24; a = 12; О - центр основания, МО - высота пирамиды, сечение пересекает MD в точке Q, МС в точке Р, МО в точке К. Надо найти площадь четырехугольника BGQP. Плоскость сечения II АС, поэтому GP II AC, откуда MG/GA = МК/КО = MP/PC = 2/1;то есть 1. GP = (2/3)*AC = a*2√2/3; (из подобия треугольников AMC и GMP)2. К - точка пересечения медиан треугольника MDB. То есть MQ = DQ;И еще, поскольку у квадрата диагонали перпендикулярны, AC перпендикулярно плоскости треугольника MDB, откуда следует, что GP перпендикулярно BQ, то есть площадь S четырехугольника BGQP равна S = BQ*GP/2;Остается найти медиану m = BQ равнобедренно треугольника MDB с боковыми сторонами MD = MB = b = 24; и основанием BD = a√2; (a = 12);(2*m)^2 = 2(a√2)^2 + b^2;m = (1/2)*√(4*a^2 + b^2);S = (1/2)*(a*2√2/3)*(1/2)*√(4*a^2 + b^2) = (1/6)*a*√(8*a^2 + 2*b^2);ну и надо подставить числа.если b = 2*a, то S = (2/3)*a^2 = 96;

(44 баллов)