Объём правильной треугольной призмы 3√3 м3. Радиус окружности, описанной около основания...

0 голосов
210 просмотров

Объём правильной треугольной призмы 3√3 м3. Радиус окружности, описанной около основания призмы равен (2√3)/3 м. Найти высоту призмы


Геометрия (15 баллов) | 210 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

R=2*корень(3)\3

R=a*корень(3)\3

а=R*корень(3)

где R - радиус окружности, описанной вокруг правильного(равностороннего) треугольника

а -сторона правильного треугольника

а=2*корень(3)\3* корень(3)=2

Sосн=a^2*корень(3)\4

где Sосн - площадь основания(правильного треугольника)

Sосн=2^2*корень(3)\4=корень(3)

V=3*корень(3)

V=Sосн*h

h=V\Sосн

h -высота призмы V - обьем призмы

h=3*корень(3)\корень(3)=3

Ответ:3 м

(409k баллов)