Помогите,пожалуйста решить. 5sin2x-2sinx=0

0 голосов
371 просмотров

Помогите,пожалуйста решить.
5sin2x-2sinx=0


Алгебра (12 баллов) | 371 просмотров
Дан 1 ответ
0 голосов

5sin^2x-2sinx*cosx+cos^2x=45sin^2x-2sinx*cosx+cos^2x - 4= 0  Делим на cos^2x5tg^2x-2tgx+1 - 4(1+tg^2x) = 05tg^2x-2tgx+1-4-4tg^2x=0tg^2x-2tgx-3=0D=4+12=16tgx=3  ->x=arctg 3 +pi*ktgx=-1  ->x=-pi/4+pi*l

(14 баллов)