![image](https://tex.z-dn.net/?f=%282cosx%2B+%5Csqrt%7B3%7D+%29%283cosx%2B4%29%3D0+%5C%5C+tgx%3E0+%5C%5C+2cosx%2B+%5Csqrt%7B3%7D+%3D0+%5C%5C+cosx%3D-+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D++%5C%5C+x%3D%2B-+%5Cfrac%7B5+%5Cpi+%7D%7B6%7D+%2B+%5Cpi+n+%5C%5C+3cosx%2B4%3D0+%5C%5C+cosx+%5Cneq+-+%5Cfrac%7B4%7D%7B3%7D+)
0 \\ 2cosx+ \sqrt{3} =0 \\ cosx=- \frac{ \sqrt{3} }{2} \\ x=+- \frac{5 \pi }{6} + \pi n \\ 3cosx+4=0 \\ cosx \neq - \frac{4}{3} " alt="(2cosx+ \sqrt{3} )(3cosx+4)=0 \\ tgx>0 \\ 2cosx+ \sqrt{3} =0 \\ cosx=- \frac{ \sqrt{3} }{2} \\ x=+- \frac{5 \pi }{6} + \pi n \\ 3cosx+4=0 \\ cosx \neq - \frac{4}{3} " align="absmiddle" class="latex-formula">
Ответ: х=+- 5π/6+πn, n∈Z