1. Площадь сечения плоскостью AEC - это площадь треугольника AEC. AC - диагональ квадрата со стороной 2, то есть AC=2√2. Так как EC=EA=2√2, треугольник AEC равносторонний. Найдём его площадь по формуле S=√3a²/4, где a - сторона треугольника, тогда S=2√3.
2.Проведём перпендикуляр EH из точки E к плоскости ABC, это высота пирамиды. Тогда угол ECH будет углом между EC и плоскостью ABC. Так как H - середина квадрата в основании, CH=√2 (половина диагонали). CE=2√2. Так как треугольник ECH прямоугольный, а гипотенуза CE в 2 раза больше катета CH, угол CEH равен 30 градусам, а угол ECH равен 90-30=60 градусам.
3.Проведём апофему EK в грани ECD. Тогда угол EKH будет углом между плоскостями CDE и ABC. KH=1 (половина стороны квадрата основания), EK вычислим из треугольника EKD по теореме Пифагора (этот треугольник прямоугольный, так как EK - высота в равнобедренном треугольнике ECD). KD=1, ED=2√2, тогда EK=√7. Тогда cosα=1/√7=√7/7 - косинус угла EKH. Соответственно, сам угол равен arccos(√7/7).
4.BE+EC=BC. BC-AB=BC+(-AB)=BC+BA=BD. BD+DE=BE. BE=AE=2√2.
5.Плоскость AEC содержит прямую EH, перпендикулярную плоскости ABC. Следовательно, эти плоскости взаимно перпендикулярны.
Если что-то непонятно, пишите.