Докажите, что при всех целых n значение выражения: 1) n (n-1) - (n+3) (n+2) делится на 6; 2) n (n+5) - (n-3) (n+2) делится на 6. ПОМОГИТЕ ПЛИЗЗЗ!!!
Раскроем скобки: 1) n(n-1)-(n+3)(n+2)=n²-n-n²-3n-2n-6=-6n-6=-6(n+1) 2) n(n+5)-(n-3)(n+2)=n²+5n-n²+3n-2n+6=6n+6=6(n+1) т.к. один из множителей делится на 6, то и произведение делится на 6, т.е. данные выражения делятся на 6 при любом n
1)= n^-n-n^-2n-3n-6=-6n-6=6(-n-1)-если один из множителей делится на 6, то и произведение делится на 6; 2)=n^+5n-n^-2n+3n+6=6n+6=6(n+1)-правило тоже; (^-это квадрат)