Доказать что параллелограмм является ромбом, если его сторона образует с диагоналями...

0 голосов
447 просмотров

Доказать что параллелограмм является ромбом, если его сторона образует с диагоналями углы, сумма которых равно 90(градусов)


Геометрия (61 баллов) | 447 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обозначим угол между стороной АВ и диагональю АС ∠1,
а угол между стороной АВ и диагональю BD ∠2.
По условию ∠1 + ∠2 = 90°.
Тогда в ΔАОВ ∠АОВ = 180° - (∠1 + ∠2) = 180° - 90° = 90°.
Т.е. АС ⊥ BD.
А если в параллелограмме диагонали перпендикулярны, то это ромб.

(80.1k баллов)