решите,пожалуйста) sin2x+cosx=0

0 голосов
37 просмотров
решите,пожалуйста)
sin2x+cosx=0

Алгебра (86 баллов) | 37 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
sin2x+cosx=0
2sinxcosx + cosx = 0
cosx (2sin + 1) = 0
cosx = 0                                        или             2sinx = -1
x = \frac{\pi}{2} + \pi n                                    sinx = \frac{-1}{2}
                                                                         x = (-1) ^{n+1} \frac{\pi }{6} + \pi n 
(3.1k баллов)
0 голосов

вот))))))))))))))............
image
(4.7k баллов)